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Transonic rotational flow over a convex corner 

By ROBERTO VAGLIO-LAURIN 
Polytechnic Institute of Brooklyn, New York 

(Received 12 October 1959 and in revised form 12 February 1960) 

A singularity is encountered in the flow field about two-dimensional and axisym- 
metric bodies characterized by a sharp corner, where the fluid velocity becomes 
sonic. Investigation shows that the problem in question belongs, as do many 
other discontinuity problems, to the family of asymptotic or ‘ boundary-layer ’ 
phenomena of mathematical physics. The solution of a first approximation to the 
flow equations is given by a series in powers of a variable measuring the distance 
from the corner, with coefficients depending on an appropriate similarity variable. 
The leading coefficient of the series is independent of three-dimensional and 
rotationality effects, in complete analogy to the well-known solution of the 
corner problem in supersonic flow. Detailed results are presented for the leading 
singularity and for the first two corrections due to rotationality and axial sym- 
metry of the flow. 

1. Introduction 
The uses of blunt wings and bodies for hypersonic flight has presented the 

aerodynamicist again with problems of the transonic type, wherein regions of 
subsonic and supersonic flow are encountered simultaneously. Among the many 
possible configurations, there is particular practical interest in those characterized 
by a sharp corner, which determines the location of the sonic point. This point of 
view is prompted by the experimental results of Ferri (1958) who showed that, by 
suitable location of the shoulder, one may reduce the heat transfer at the stagna- 
tion point on a blunt profile having a prescribed radius of curvature of the nose. 
From a theoretical point of view it is of interest to obtain information which, when 
combined with available methods such as those of Vaglio-Laurin & Ferri (1958), 
and Van Dyke (1958), permits the analysis of the flow field about general blunt- 
body shapes. 

The investigation of the transonic portion of two-dimensional and axisymmetric 
rotational flows with a sonic singularity cannot take advantage of the hodograph 
transformation which has been the main tool of the aerodynamicist interested in 
classical two-dimensional irrotational transonic flow. For the present problem, 
however, analysis in the physical plane does not present excessive complications; 
in fact it has the advantage that one gains an immediate physical appreciation of 
the phenomenon which would be lost in the hodograph plane. The subsonic and 
supersonic portions of the flow are joined by a ‘boundary layer ’ with a behaviour 
typical of the classical discontinuity phenomena common to many branches of 
physics (see, for example, von KBrmBn (1940), Carrier (1953), and Friedrichs 
(1955)). The leading term of the solution describing the flow in the ‘boundary 
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layer ’ predicts the same pressure distribution on the wall and the same sonic line 
shape as the leading singularity of Guderley’s (1948) hodograph solution for the 
transonic corner problem in two-dimensional irrotational flow; the boundary- 
layer feature, and its bearing on the numerical analysis of complicated flow fields, 
could hardly be detected in the hodograph plane. 

Transonic rotational flow around a sharp corner on an axisymmetric body has 
been investigated by Ho & Holt (1966), who used series expansions in powers of 
the distance from the shoulder with coefficients depending on the angular co- 
ordinate based on the shoulder. They found that the lowest-order terms corre- 
spond to a Prandtl-Meyer expansion; and they gave formal solutions for the 
fist-order perturbations in the subsonic and in the supersonic regions of the flow. 
However, they did not investigate in detail the problem of matching the two 
regions. It is shown in $2  that direct matching cannot be carried out. This 
impossibility of matching together with the classical symptoms of (a )  different 
analytic laws obtained to zero order in the subsonic and in the supersonic region, 
and ( b )  an infinite value of one velocity component at the boundary between the 
two regions, strongly suggest the occurrence of a boundary layer. Just to quote 
a few examples, the symptoms are the same as those encountered in the study of 
classical viscous boundary-layer theory, in the study of transonic flows by small- 
perturbation theory, and in the asymptotic theory of the wave equation at  a 
caustic surface. 

In  general, boundary-layer analyses connected with solutions of non-linear 
partial differential equations are employed heuristically. In  the present case one 
obtains a posteriori proof of validity from the following findings: 

(a)  As should be expected on physical grounds (see Vaglio-Laurin & Ferri 
(1968)), the leading term of the solution coincides with that pertaining to plane 
potential flow. 

(b )  The behaviour on the supersonic side is exactly that predicted byperturba- 
tion of a Prandtl-Meyer flow; however, the infinity in the perturbation velocities 
is eliminated. 

Further heuristic substantiation of the approach may be found in the fact 
that the prevailing equations are the classical ones of transonic flow. 

The details of the subject analysis are presented in the following sequence. 
The boundary-layer approach, the pertaining equations, their solution by means 
of a series of functions of an appropriate similarity variable, and the requirements 
thereon are first discussed ($2). A detailed study of the non-linear ordinary 
differential equation governing the leading singularity and the solution of this 
equation are the subject of $3. The linear equations governing the subsequent 
coefficients of the series solution and detailed results for the leading axisym- 
metric and rotational effects are then given ($4). Finally, the application of the 
results to the numerical analysis of the supersonic flow about blunt nosed 
bodies with a sonic shoulder is discussed in $ 6.  

2. The governing equations 
The difficulty associated with a straightforward analysis of the corner singu- 

larity is apparent when one particularizes the results of Ho & Holt (1966) to  plane 
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potential flow. With the notation of these authors shown in figure 1, one obtains 
for the first-order coefficients in the subsonic region 

vl(e) = ~ , [ i  + 00s 2(e + 41, ( 1 4  
Tr,(O) = -A,sin2(8+a), (1  b )  

U 
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FIGURE 1. Schematic diagram and notation for preliminary considerations. 
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FIUURE 2. Schematic diagram of typical sonic shoulder and reference co-ordinate system. 

and in the supersonic region 

Ul(8) = const. [cos (h575)1(2A*+1)/2Aa [sin (A$)]*, ( 2 4  
Tr,;(O) = W;(e)’ ( 2 b )  

with 

Matching at the sonic line requires 

or, in view of (2a, b)  zero perturbation in the flow field. The Merent  behaviour 
with 4 of the subsonic and of the supersonic perturbations suggests the same 

(K)p=o = 0, 

6-2 
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conclusion; yet the perturbations in question are certainly valid outside of the 
sonic region. The situation is then typical of an asymptotic phenomenon; a 
boundary-layer approach is suggested. 

As in many classical problems, the parameter of the asymptotic expansion does 
not occur in the differential equations governing the flow considered here. This 
parameter must then be related to one of the characteristic quantities in the 
problem, say the departure of the local velocity from the sonic value, by the 
requirement that the approximate boundary-layer equations have all the quali- 
tative features necessary to describe the phenomenon on hand, namely, a tran- 
sonic flow. With the notation of figure 2 (x-co-ordinate across the boundary 
layer), the asymptotic expansion is easily carried out along the following lines: 

(a)  New independent variables are introduced 
- 
5 =XIS, 7 = y, (3) 

where 6 is a quantity which may represent the thickness of the boundary layer, 
and which tends to zero as the magnitude of the velocity perturbation from sonic 
at the edges of the layer tends to zero. 

(b)  The velocity field is described by small perturbations superposed on a 
parallel sonic stream in the x-direction. However, the orders of magnitude of the 
perturbations in the i5 and 5 directions can be different; we denote them by ei 
and vi, respectively, to get 

U 
a* 

(4a) 

(4 b )  

_ -  - 1 +GlUl(E, 5) +% U2Ci5, 5) + . . ., 
V 
a* 
- = Y l ~ ( % , 5 ) + V 2 ~ ( ~ , 5 ) + . . . .  

(c) In  view of the asymptotic Prandtl-Meyer expansion behaviour to be 
matched on the supersonic side, we set v; = €1”. 

(d) In  the axisymmetric case we assume 6< r ,  that is, the thickness 6 of the 
boundary layer a t  any point is much smaller than the radial distance of the point 
from the axis. Under these conditions, which are met by all present practical 
configurations, the effect of transverse curvature is negligible, and one can set 
within the boundary layer 

( 5 )  

The analogy with the classical problem of the viscous boundary layer on a body 
of revolution is quite evident. 

On this basis one can proceed to the expansion of the equations of motion for 
homoenergetic flow written in the form 

(6a) 

r = r (7 )  = r0+7cosa. 

u2 div q = q . V(+q2),  

rn = exp (y), s -s 
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where q denotes the local velocity vector, a the local speed of sound, o the 
vorticity vector, I, the pressure, p the density, S the entropy, and R the gas con- 
stant. The subscript 00 refers to free-stream conditions. 

It is of interest to notice that, since we are concerned with a local boundary- 
layer phenomenon, the ideal gas analysis to be developed here can be applied also 
to problems involving flows of real gases in thermodynamic equilibrium. When 
(6a, c) are expanded along the lines stipulated in (a )  to (d) above, one obtains the 
following leading equations 

where the quantities j and D are defined by 

j = O ,  D = 1  

j=1, D =  ( l+ - -  ' cry a)  ro 

the stream function $ is defined by 

for two-dimensional flow, 

for axisymmetric flow, 

and the factor pl denotes the order of magnitude of the local entropy level. 
Physically significant results are obtained from (7 a, b) only for 

6 = €$, pul = €l. (9) 

Thus, we find that the thickness of the boundary layer is proportional to the 
square root of the perturbation velocity in the %-direction; upon completion of 
the solution we shall give a quantitative definition of the thickness 8. The second 
relation in (9), namely, the identity of the orders of magnitude of velocity pertur- 
bations and entropy gradients, could have been stipulated a priori. 

Equations (7a, b )  can be simplified further. First, we notice that for a = in 
the axisymmetric problem degenerates into the strictly two-dimensional problem ; 
with this understanding we introduce new independent variables (, r] defined by 

< = v ,  r = r  for two-dimensional flow,] 

cos a - 
fi=---t, 

r0 
for axisymmetric flow. 

Secondly, we observe that, within the boundary-layer approximation, the 
entropy gradients can be expressed by 
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Then (7a, b )  can be rearranged in the final form 

lI(Y-1) porn a, 
K d = ( & )  -- for two-dimensional flow, 

Ki=(-&) 

PI Y ca 
W-1) ri pocoa, 

cof3a Pt Y 
+ ci) for axisymmetric flow (i > 1 ) .  

The final form of the equations is, from a mathematical point of view, the same as 
that obtained in the analysis of transonic flow. The essential non-linearity that 
permits the description of mixed flows is retained. 

The solution of (12a, b )  by means of series expansions in powers of the distance 
from the shoulder, with coefficients depending on an appropriate similarity 
variable, will now be sought. To this effect we let 

Substitution of (14) into (12)  yields 

do = 2 p - 2 ,  d, = 1 ,  d, = 2p-1 ,  d, = 2,  

e, = 3p - 3, el = p ,  e,  = 3p - 2, e3 = 1 + p ,  etc. 

One can easily prove that the exponent p in the equation for the similarity 
variable 5 must satisfy the requirement 1 < p < 1-5. The changes of flow pro- 
perties along the body surface in the supersonic region must satisfy the com- 
patibility condition for a characteristic line, namely (cf. F e d  1954) 

Since the boundary layer extends into the supersonic region, the solution must 
comply with (15) ;  effects of either three-dimensionality or rotationality of the 
flow must vanish at  7 = 0. Hence, one requires d, =- do and p < 1.5. Also, if one 
combines the equation expressing the slope of the sonic line 

with (15) ,  one obtains (d7/d6)80nic = cg and, therefore, p 2 1 .  The equations to be 
satisfied by the leading terms (n = m = 0) in the series (14)  follow immediately 

(3p-3)v , -p[v; -uou;  = 0, 

(2p -2 )uO-p&;-v ;  = 0.  
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Upon solution of (16a, b) (see 3 3 for details), one finds p = 1.25. The differenae 
between subsequent powers of 7 in the series (14) is then equal to +; the linear 
equations to be satisfied by the pertaining coefficients can be written in the fol- 
lowing general form 

m- 1 &m 
( d m + ~ - l ) V m - p ~ v ~ - ( z C o U : , + z C ~ U m )  = x ~ i ~ k - t - j  x ( - I ) - ’ V ( ~ - ~ ~ I ,  ( 1 7 ~ )  

i=l  i= l  

dmum -pgu:, - w:, = X*(& (y  + 1)+. (17b)  

As [++m (supersonic side), the solutions of the systems (16) and (17) are 
required to behave like a Prandtl-Meyer expansion and perturbations thereof. 
A second set of boundary conditions consistent with the given body profile is 
imposed on the subsonic side. The detailed solutions of the systems (16) and (17) 
are reviewed in the following two sections. Several relevant considerations are 
similar to those made by Guderley & Yoshihara (1949) in their study of axisym- 
metric transonic flows. 

3. The leading singularity 

be introduced 
The flow described by (16a,b)  is irrotational; and so a potential can 

= q3P-2  S(YL (18) 

such that ?Lo = g”, VO = (3P - 2)9-PC9’. (19) 

(9’ -p2[2) g” + 5 p ( p  - 1) gg” - ( 3 p  - 3 )  ( 3 p  - 2 )  g = 0. (20 )  

Equation (16b)  is then identically satisfied, while (16a) becomes 

The non-linear ordinary differential equation (20 )  has a group property; namely, 
if g = a([) is a solution then other solutions are given by g = k - 3 G ( k ~ ) ,  where k is 
an arbitrary constant. When an equation has such a property, its order can be 
lowered by one through an appropriate change of variables. In  the present case 
one introduces new variables s and t 

s = p g ,  t = p g ” ,  121) 

to obtain the first-order equation 

dt _ -  ( 3 p - 2 )  ( 3 p - 3 ) s - p ( 3 p - 5 ) t - 2 t 2  
- 

as (t - 3s)  (t -p2) > 

and the inverse transformation law 

log g = J” 
t -3s ’  

Actually the change of variables is advantageous only in as far as (22 )  lends itself 
more readily to a qualitative study of the integral curves; on this basis one can 
proceed directly to the numerical integration of (20) .  

Investigation of (22 )  must provide the following information: (a)  location of the 
singular points; ( b )  physical significance of these points; (c) structure of the 
integral curves in their neighbourhood; (d )  general trend of the integral curves. 
The singular points in the finite portion of the (s, t)-plane are 

(24) s = o  , 1 3, a 3p 3 ( 3 y ~ - 2 ) - l ,  t = 0, 1, Pa- 
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The behaviour at infinity in the (9, t)-plmeis studied by the conical transformation 

s = xl/xo, t = x,/xo (25) 

and by subsequent intersection of the conical surfaces representing the integral 
curves with a selected plane, say x1 = 1. With this choice of the plane of inter- 
section, the integral curves of (22) are projected into those of the equation 

9 (26) 

xo = 0, 0, x1 = 1, 1, x, = 0, 1. (27) 

ax, - x,(x, - 3) (x, -pZxo) + 22; +p(3p - 5 )  x,xo - (3p - 2 )  (3p - 3) xo 
G- zo(x2 - 3) (% - P 2 Z o )  

with singular points at 

5 =  0 

= o  
L 

FIGURE 3. Spherical projection of the (s, t)-plane and of the curve representing the coef- 
ficient of the leadiig singularity. (The indicated scale of 5 is that for sonic velocity at 
5 = 1.) 

If one selected x, = 1 as projection plane, no other singularity would appear. 
Hence, we conclude that all the singular points of (22) are those listed in (24) and 
(27). In  the following we shall examine them in detail. The schematic diagram of 
the (s, t)-plane shown in figure 3 will be of some assistance in these considerations. 

Point S = 0,  t = 0 

In the neighbourhood of this point the differential equation can be simplified to 
the form 

(28) 
dt ( 3 ~  - 2) (317 - 3) s -p(3p  - 5) t -- 
ds- p,( 3s - t )  
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The integral curves are then given by 

(t - as)P (t -ps)” = c,, 
1 1 

P P 
where a = - (31, - 2 ) ,  ,8 = - (3p - 3) ,  

p = - 2 ,  v = 3 .  

The point in question is a node. In  the neighbourhood of the same, 

89 

(29) 

Since 5 --f co, the point represents one of the edges of the boundary layer. The 
velocity components (30b,c) do not match the desired behaviour on the super- 
sonic side; hence, the edge in question must be the subsonic one (5 4- m). For a 
regular body shape on the subsonic side the velocity component a,, must have a 
non-singular asymptotic behaviour as 5 --f - co; therefore, the solution (30c) is not 
acceptable in general. This condition leads to selecting among the solutions (29) 
that characterized by C, = 03 and by 

Correspondingly, one finds for the function g the asymptotic expansion 

m 

i = O  
g = ( - f1)3-2/” A .( - [)-2*/P, (32) 

with A,  arbitrary (A,  = - G/p) and 

A,  = (3-3)2&I)A& ( 3 3 4  
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The sign of A,  ( > 0)  is determined by the condition that < 0 (subsonic flow) as 
6 +- co. Correspondingly, one moves along the integral curve in the (a, t)-plane 
in the direction of negative t. The magnitude of A,  (i.e. the scale of 5) remains 
arbitrary in accordance with the group property mentioned above; we shall 
select it  so as to obtain sonic velocity (9' = 0 )  a t  = 1. 

Point s = 6, t = 1 

In  the neighbourhood of this point equation (22 )  is simplified by introducing 
variables 

to get 

The integral curves are then given by 

g = 8 - & ,  7 z t - 1  

(34)  
d~ - ( 3 ~ -  2 )  ( 3 ~ - 3 )  g- (3p2 - 5~ + 4)7 
da- (1 -$Iz) (7 - 3 ~ 7 )  

(7-aaa)r(7-/3cT)Y = c,, (35) 
where a = (3~-2 ) (p - l ) - ' ,  P =  3 ( p - 1 ) @ + 1 ) - ' ,  

,U = ( ~ + 1 ) ( 7 ~ - 5 ) - ' ,  Y = 6 ( ~ - 1 ) ( 7 ~ - 5 ) - ' .  

For the range of interest 1 < p < 1.5, it  is 1 2 p > 0 and 0 < v c 1; hence, the 
point in question is a saddle of the integral surface (35) .  Along the principal 
directions 7 = ka (k = a, P) through the saddle-point (these are the only two 
integral curves through the point), one obtains 

g = Q,gU(k-3) ,  

If k = a, g tends to zero and the point s = 9, t = 1 represents the 7-axis. The sonic 
line (QE = 0)  coincideswith the y-axis; however, the flow issupersonicon either side 
of this line. Hence, the solution represented by the a integral curve must be 
rejected. If k = ,8, g tends to infinity, and the point in question represents either 
edge of the boundary layer, depending on the sign of the constant C,. The appro- 
priate choice is 5 -+ + 00 since the velocity components (36b, c )  exhibit the desired 
asymptotic behaviour of a Pradtl-Meyer expansion. Thus, we find that the 
solution for the leading singularity must be represented by the integral curve 
entering the singular point in the P-direction. Correspondingly, we obtain for the 
function g the asymptotic expansion 
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B3 = - 2(2 -p) [6p(2 -p) BOB2 - ( 3  - 2p)  B:] 

x ( (9  - 4P) [4(2 -p> ( 1  - P2) -PUP - 5)l- (3P - 2)  t3P - 3)}-l, (38c) 

B4 = - ( 1  1 - 5p) [p(9 - 4p) BOB3 - 3(3 - 2p) (2  -p) BIB,] 

x ( (12-5p)  [ ( I 1  -5p) (1  -p2) -p(7p  - 5 ) ]  - (3p - 2) (3p - 3)]-’, (38d)  

B, = - (7 - 3p)  [2p(l2 - 5P)BOB4 - 2(3 - 2p)  (9  - 4p) BlB3 - 9(2 -p)2Bi] 

x {3(5 - 2p)  [2( 7 - 3p)  (1  -p2)  -p(  7 p  - 5)] - (3p - 2)  (3p - 3)}-l. (38 e )  

The sign of B, ( < 0 )  is determined by the condition that the velocity component 
<D, be decreasing as one moves inside the boundary layer from the supersonic 
edge; in the (8, t)-plane one is then limited to move along the P-direction in the 
sense of decreasing t. Again the magnitude of B, (scale of c)  can be fixed arbitrarily 
in view of the group property of (20). 

Point s = +p3[3p - 2]-l, t = p 2  

In  the neighbourhood of this point the differential equation (22) is simplified by 

introducing variables g = s - - 6  3 p  3 (313 - 2)-’, T = t -p2 

to get 
a7 p(7p  - 5)  (3p - 2)  T - (3p - 2)2(3p - 3)  a - - - 
d a  2P2(P+1)7 

(39) 

As for the previous singular point considered, the integral curves are formally 

3p-2  P - 1  
given by (35) with 

a=- , p =  3(3p-2)- 
2P P(P+l ) ’  

/J = 6 ( 1 - ~ ) ( 7 - 5 ~ ) ,  V =  ( 1 + ~ ) ( 7 - 5 ~ ) - ~ .  

For the range of interest ( 1  < p < 1.5), ,u and Y are of opposite sign; hence, the 
point in question is a node. 

Several comments are warranted at this stage. First, we observe that any 
integral curve intersecting the line t = p 2  a t  s + #p3( 3p - 2)-l represents a solution 
with a limiting line. Indeed, at the point of intersection one finds an extremum 
of 5, since 

- = 0 and, therefore, d(1ogc) = 0, 
dt 

Any such solution must be rejected. Secondly, we note that any point on the line 
t = p 2  represents a first family (positive slope) characteristic line of the system 
(16a, b)  in the physical plane since, for t = p2,  the two quantities 

as 

I;=oonst. 

become identical; however, consistent with the aforementioned occurrence of 
limiting lines, the compatibility conditions along the characteristic, namely 

d(Q7) - Q ( ~  + I)& a(@!) = 0, 
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is identically satisfied only when the representative point is at s = $p3(3p - 2)-l. 
Solutions represented by integral curves passing through the latter point must 
also be rejected on the following grounds: Whenp > 1 the quantities a and p are 
positive while the quantity (t - 3s) is negative; then 

d as 
at at - (log {) = ( t  - 3s)-1- 

is smaller than zero. An observer proceeding in the sense of increasing { across 
the boundary layer described by such a solution, would encounter a compression 
in the neighbourhood of the characteristic that maps at the singular point; this 
situation is impossible in the subject expansion flow. 

Thus, we conclude that the integral curve of interest must lie all below the 
line t = p2. 

Point xo = 0, x, = 0 

In  the neighbourhood of this point equation (26) can be simplified to the form 

which is not reducible to the standard type encountered in the previous cases. We 
introduce then an additional assumption; namely, x2 3- xo, and reduce (40) to 

which can immediately be integrated to obtain 

5, = x,$[Cl + 6(3p - 2) (p - 1) xi]* (41) 

consistent with the assumption. If we assumed xo $ x,, we could also integrate 
the equation readily; however, the result would not be consistent with the 
simplifying hypothesis. We conclude that (41) represents the integral curves of 
(40) within the neighbourhood in question. A plot of these integral curves is 
shown in figure 4. From (23), (25)  and (41) one obtains 

6 = c,s.a. (42) 

Thus, as one proceeds along an integral curve through the point in question, the 
variable {goes through zero and changes of sign. It may then be conjectured that 
such will be the case for the integral curve of interest. 

Point xo = 0, x2 = 1 

In  the neighbourhood of this point (26) is simplified by introducing the variable 
cr = (z2- 1) to obtain dcr cr 

- = --+(2p2-5p+3) 
dxo 2x0 

with the integral curves 

x.2-1 = c1~;~+~(2p2-5p+3)Zo.  (43) 
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From (23), (25) and (43) one obtains 

5 = C, exp (s-3). 

For s and t tending to either + co or - co, 5 remains finite; hence, g and g' must 
tend to infinity, given infinite velocity. The integral curves passing in the vicinit,y 
(or through) this point must be rejected. 

: 2  
2.5 

FIGURE 4. Integral curves in the neighbourhood of the singular point xo = 0, 2, = 0. 

From the above investigation of the singular points of (22), we conclude that 
the desired integral curve should have the trend shown in figure 3. The value of 
the exponent p ,  which defines the similarity variable 5, is determined by the 
condition that the integral curves through the points s = 0, t = 0 and 5 = 4, t = 1 
are described by the same asymptotic law (41) as s -+ co and t --f 00 ( 5  -+ 0). 

The numerical work is expedited if one operates directly on (20) along the 
following lines: (a )  Two numerical integrations, both proceeding toward 6 = 0, 
are carried out for several values of p ;  one integration proceeds from large 
negative gwith initial values given by the series (32), and one from large positive 
6 with initial values given by the series (37). (b )  The quantities s and t are com- 
puted in the neighbourhood of 5 = 0 (on both sides) from the definitions (21), and 
are used to determine the constant C, in (41). (c) The correctp is that for which the 
two values of C,, as determined for 5 > 0 and for 6 < 0, are identical. In this way 

one finds p = 1.25, Cl, = 1.4369. 
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The scale of 6 can then be chosen and matched on both sides of 6 = 0. We have 
selected i t  so that the sonic line (9' = 0) is described by the equation 

6 = (y + l)-q+ = 1. 

With this choice of scale the coefficients A,, B, and C, in (32), (37) and (42) 
become, respectively, 

A ,  = 1.9444, Bo = - 3.2636, C, = - 1.2489. 

Corresponding values of the functions g, g', g", and oo = [(3p-2)g-pcg'] are 
plotted in figure 5 for the range - 3 < g < 3. Outside of this range all the afore- 
mentioned functions are accurately described by the series (32) and (37). 

FIGURE 6. The function g(5) and its derivatives. 

Several aspects of the solution just obtained warrant some comment. We 
emphasize again that the coefficient of the leading term in the series (14), which 
describes the flow in the boundary layer, is independent of axial symmetry and 
rotationality, and that it exhibits the behaviour of a Prandtl-Meyer expansion 
on the supersonic side. From the asymptotic behaviour of aq for 6 +- 00 

[equation (31)], we find that this leading term is consistent with a flat wall on the 
subsonic side; we shall see in the following section that the effect of wall shape is 
manifested in subsequent terms of the series. 

We can then compare some results of the present analysis with those obtained 
by Guderley's (1 948) hodograph solution for two-dimensional irrotational flow 
over a corner with a flat wall on the subsonic side. From (31) we obtain on the 
subsonic side Ap - cb, - 1<10*. 

From the definitions of the variable 6 and of the velocity component cbq N 8 
(8 sf low direction measured from the k-axis), we obtain on the sonic line 

8 - 7% - @. ( 5  = 1, 9' = 0) 
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Both results coincide with those given by Guderley. It can also be shown that 
the present solution degenerates into the well-known Prandtl-Meyer expansion 
when the subsonic flowis uniform (see Vaglio-Laurin 1959). 

t'/ 

FIGURE 0. Flow described by leading singularity. Lines of constant velocity 
( y+  I)) Qpf = const. 

FIGURE 7. Flow described by basic singularity: __ Lines of constant flow defiexion 
e = - const.; -0- approximate streamlines (y+ 1)) (dy/df) = all; ---- actual 
streaAGs (y + 1)) (dy/df) = + Q~)-I .  

Some features of the flow field described by the leading singularity are shown in 
figures 6 and 7, where isobars, isoclines, and streamlines are plotted for the case 
with sonic line at g = 1. 
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4. The coefficients of higher-order terms 
Subsequent terms in the series (14) must be determined when the analysis of 

an actual flow field (either plane or axisymmetric), with given velocity and 
entropy distributions at  infinity, is required. Upon determination of the coef- 
ficients of the higher-order terms, the behaviour of the subsonic flow in the 
neighbourhood of the sonic velocity can be prescribed; these boundary conditions, 
together with conditions at  infinity andon the surface of the body, aresufficient to 
determine the subsonic flow field and, in particular, the magnitude of the afore- 
mentioned coefficients at the subsonic edge of the boundary layer (5-t-00). 

Corresponding velocity distributions at  the supersonic edge of the layer are 
provided readily by the subject solutions; thus, initial values for classical pertur- 
bations superposed on a Prandtl-Meyer flow are obtained, while the matching 
difficulty attached to a straightforward perturbation procedure is overcome. 

The coefficients of subsequent terms in the series (14) are given by the solution 
of systems of linear equations written in general form at (17). Since the equations 
are linear, the pertaining solutions can be divided into a complementary function 
and a particular integral, which we shall denote by ug), vg) and u$), v$), respec- 
tively. Here we shall discuss the determination of the complementary functions, 
and give the particular integrals for the coefficients representing the leading 
effects of rotationality and axial symmetry, namely, the coefficients of vdl and 
74 (d, = 1, d, = 1.6). 

I n  connexion with the analysis of the complementary solutions we can intro- 
duce potential functions 

9 m  = T d m f P f m ( 6 ) ,  (44) 

such that ug = f;, vg) = (dm +p) f, -pg;. (45) 

The homogeneous equation associated with (17 b )  is then identically satisfied, 
while the homogeneous equation associated with (17 a)  becomes 

Since the quantity (g’-p2g2) is never equal to zero (negative for all values of c), 
(46) has only two singular points at 6 = f 00. By standard methods two inde- 
pendent solutions for 6 +-a are found: 

co 

with a:;, a$’,, arbitrary and, for i 2 1, 
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For 6 ++ 03, two independent solutions are given by 

W 

f - ,p,+Px(P-1) (g\[4/fp+i), 
m l  - 

i = O  

97 

1 
2i(p + 1 ) Z  b$\ = - [dm + 2p - 6i]  [(6i - 1 )  ( 1  - p )  - 2(d,a +p)]-1 

i -1  

i=O 
X E b - 1 - 2(i  -j - I)] [d, + p  - 1 - 6j]  Bd-j-l bgi. (50 b )  

The solutions (47a, b )  give the following asymptotic behaviour of the velocity 
components at the subsonic edge of the boundary layer (6 + - co) : 

(y+  i)--+q%g\ = - ( y +  1 ) - c d r n + ~ ) ' 3 ~  m +  1 lqw~, (51a) 

(51 b)  

(52a) 

(52b)  

(; ) 

r i l  ) 
y e m v g \  = 0, 

(y  + 1)-*ydrn&'L = - (y  + 1)4dm+P-1)/3P f 1 7 l[l(drn-1)/P, 

yernvgi = (y + l ) - (drn+~-l) /3p I,$l(drn+P-l)lp- 

The solutions (49a, b )  give the following asymptotic behaviours at the supersonic 
edge (c++co): 

One can immediately verify that, as 6 -+ + 00, the solution ugk, wgi, described by 
(54a, b ) ,  exhibits the behaviour appropriate to perturbations superposed on a 
Prandtl-Meyer flow; hence, such a solution merges smoothly with that proposed 
by Ho & Holt (1956) at the supersonic edge of the boundary layer. Vice vema, it 
can be seen from (53a, b )  that the second solution [cf. (49a)I for ++a must be 
rejected; indeed, infinite velocities at the corner would be obtained, in contrast 
with the physical boundary condition that the flow exactly on the body exhibit the 
behaviour of a Prandtl-Meyer expansion, as described by the leading singularity. 

7 Fluid Meoh. 9 
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Thus, one boundary condition is obtained for the second-order equation (46 )  and, 
therefore, for the general system (17). The second condition is imposed at the 
subsonic edge of the boundary layer by requiring that the asymptotic behaviour 
of the q-component of velocity [yem(vfii + v 9 ]  be such as to satisfytangencyat the 
surface of the given body. The solution is then completely determined. 

The complementary functions pertaining to (46 )  must be evaluatednumerically. 
Initial conditions at large positive values of 5 are obtained (except for one 
arbitrary multiplying constant) from the series (49b):  the solution is then con- 
tinued by numerical integration toward large negative values of 6, where it is 
matched with a linear combination of the series (47a ,  b) .  Upon evaluation of the 
particular integral, the arbitrary constant is finally determined by imposing the 
tangency condition on the subsonic side. 

Inspection of the asymptotic behaviour of the velocity components described 
by the complementary functions [see (51a, b) ,  (52a, b) ,  and (54a, b)] leads to the 

FIGURE 8. The functionsf,([), f;([) and wl([) associated with the effect of rotationality. 

interesting conclusion that the subsonic and the supersonic flow are described by 
series involving different powers of q. Under these conditions neither straight- 
forward expansion procedures nor gross numerical schemes can be used to 
analyse the flow around the sonic shoulder on a body. 

Having in mind the application of the present results to the analysis of the 
hypersonic flow field about blunt-nosed bodies characterized by a sonic shoulder, 
we have determined in detail the solutions pertaining to the second and third 
terms in the series (14 ) ;  the leading effects of entropy gradient at the wall and of 
axial symmetry of the flow are found thereby. It is felt that such information 
may be sufficient to describe the flow field within a reasonably large neighbour- 
hood of the corner; outside of this neighbourhood the calculations could be 
continued by a suitable numerical scheme without requiring an extremely refined 
network. In  this connexion, one must not overlook the fact that the present 
results have been obtained on the basis of a transonic small-perturbation theory 
and are applicable to regions of the flow field within which this approximation 
is valid. 

The complementary functions ford, = 1 and d, = 1.5 (satisfying the boundary 
oonditions on the supersonic side) are plotted in figures 8 and 9 for the range 
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- 3 < 5 < 3. The solutionf, contributes to the terms representing the effect of a 
uniform vorticity; the solution fa gives the analogous contribution for the effect 
of axial symmetry. Outside of the range - 3 < 6 < 3 the functions are accurately 
predicted by the series (47a, b )  and (49b). The particular integrals to be used in 

FIGTJRE 9. The functiomf,(<),fi(Q and vJ<) associated with the effect of axial symmetry. 

connexion with these complementary functions are easily found by inspection of 
the pertaining systems of equations. From the general form (17) one obtains 

(55)  

(56) 

I 
I 

pv, -pcv; - (U,Ui + u; ul) = 0, 

( p  + 1) u1 -pcu; - v; = (y  + 1)s KO, 

( P  + $1 va -p,54 - (a0 4 + 4 Ua) = ~ 1 % ;  -jvo, 
$ua-pc&- V: = O, 

for d, = 1 and d, = 1.5, respectively. A particular integral of the system (55)  is 
given by 

with the asymptotic behaviour 
(57) @'=o, V p = - ( y + l p K , g ,  

c-+&.o, ? p u p =  T K O / $  

A particular integral of the system (56), accounting only for the axisymmetric 
contribution (termjv,), is given by 

up = &&cgrr - 2(p  + 1) g'] ,  

V P )  = - &p"g" - 15P + 1) PCS' + (3P - 1) (323 + 2) 93, 

(58a) 

( 5 8 4  

( 5 9 4  

(59 b)  

( 6 0 4  

(Gob) 

with the following asymptotic behaviour. For g +- 03, 

(y  + 1) 3 a 7 1 5  - u p  = %(y + l)-+A,?j It/$, 

71.75vp = -Q(y + l)-iaA, Ig2, 
while for c + + ao, 

(y  + q-9 @ 5 ~ p )  = - Q(? + q - 1 ~  

71.75vp = &(y + 1 ) - l y  

7-2 
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It will be noticed that identical asymptotic expressions of the 7-component of 
velocity at the subsonic edge of the boundary layer are obtained from the com- 
plementary functions and from the particular integrals in the two cases con- 
sidered. Hence, the tangency condition at the wall in the subsonic region can be 
satisfied. It should also be noticed that at the supersonic edge of the boundary 
layer the particular integrals depend on lower powers of 7 as compared to the 
complementary functions; thus, the contribution of the former is predominant 
in the immediate neighbourhood of the corner. 

Finally, it  should be recognized that the higher-order terms under considera- 
tion predict a finite [-component of velocity on the 7-axis (line [ = 0). The 
asymptotic solutions (54a, b)  are valid for large 6 and 517 > 0; therefore, no 
difficulty is associated with the cases characterized by d,, < 2. 

With the information obtained thus far one may, for example, set up a pro- 
cedure for the numerical determination of hypersonic flow fields about blunt 
bodies with a sonic shoulder. This problem is discussed in the following section. 

5. Outline for application 
A representative configuration of a blunt body with a sonic shoulder is shown in 

figure 10. The problem of determining in detail the flow field about blunt bodies 
of general shape can only be attacked by numerical methods. Two approaches can 
be followed to this effect, namely: (a )  the ‘integral method’ as applied, for 
example, by Belotserkovskii (1958); (6) the ‘forward integration method’ as 
proposed, for example, by Vaglio-Laurin & Ferri (1958). 

For the particular category of bodies considered here, an extension of the 
integral method is required to obtain the appropriate behaviour at the sonic 
velocity. Several difficulties are encountered in connexion with the choice of an 
appropriate co-ordinate system for the region adjacent to the corner, and with 
the determination of the number of terms required for a reasonably accurate 
description of the flow at a general station. 

No procedural difficulty arises when the forward integration method is used. 
Between the alternatives of proceeding either from a prescribed shock shape or 
from an estimated pressure distribution on the body, the latter is preferable on the 
grounds of numerical work involved and of available rules for carrying out initial 
estimates. This point of view is corroborated by a study of Kendall’s (1959) 
experiments; observed pressure distributions upstream of the shoulder are in 
agreement with the present results and with the Mach number independence 
principle over a range extending to  low supersonic flight conditions (Nm 2 2), 
while correlations of observed shock shapes remain uncertain. 

If the forward integration analysis of the subsonic region is to proceed from the 
body toward the shock, one prescribes a pressure distribution consistent with the 
singularity at the shoulder and then analyses simultaneously the elliptic and the 
transonic regions up to the limiting characteristic; the final solution is obtained 
by iteration. When the pressure distribution in the neighbourhood of the shoulder 
is given, the scale of the subject singularity can readily be determined in accord 
with the transonic similarity rule appropriate to the simplified governing equs- 
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tions of §2;* thus, consistent initial conditions can be prescribed on a contour 
enclosing the shoulder point and extending into the supersonic region. The 
procedure and the transformation suggested by Vaglio-Laurin & Ferri (1958) 
appear to be useful for the numerical calculations. The transformation in question 
stretches the region adjacent to the shoulder and, therefore, requires a relatively 
less refined network in this neighbourhood; also, a priori knowledge of the 

FIauRE 10. Schematic diagram of flow field about a blunt body with sonic shoulder. 
ABCDEA =subsonic region; DCFBCD= transonic region. 

location of streamlines and shock in the transformed plane facilitates the estimate 
of a consistent entropy distribution and the application of boundary conditions 
at  the shock front. Determination of complete flow fields using initial data based 
on the present solution, and subsequent comparison of theoretically determined 
shapes of sonic line and shock against experiments, will be of interest. Such an 
investigation will establish the domain of validity of the present results for 
practical configurations and flight conditions. 

6. Concluding remarks 
A critical review of the difficulties associated with a straightforward series- 

expansion approach to the present problem has led to the introduction of a 
boundary layer j oining subsonic and supersonic regions. The pertaining equations 
have been given; a series solution therefor has been indicated. Upon determina- 
tion of the leading terms in the series, the validity of the boundary layer concept 
has been established on the basis of: (u) physical criteria, such as the predicted 
behaviour on the solid boundary; ( b )  comparison with the known hodograph 
solution for two-dimensional irrotational flow; ( c )  consideration of the ‘boundary- 

* This similarity rule also manifested itself in the analysis of the leading singularity 
through arbitrariness of scale for the similarity variable 5. 
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layer' flow at the supersonic edge, where the behaviour of a Prandtl-Meyer 
expansion and superposed perturbations is attained. 

Detailed results have been presented for the leading singularity and for the 
first two corrections due to rotationality and axial symmetry of the flow. It haa 
been shown that the boundary conditions at the supersonic edge essentially 
determine the behaviour of the coefficients in the series solution, while the condi- 
tions at infinity and the body profile in the subsonic region determine the thick- 
ness of the boundary layer, the nature of the series describing the flow in the layer, 
and the magnitude of the velocity components encountered therein. 

As an example, the application of the present results in the analysis of the 
hypersonic flow about blunt bodies characterized by a sonic shoulder has been 
discussed. Bodies within this category are of practical interest, since, by suitable 
location of the shoulder, one may reduce the heat transfer at the stagnation point. 
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Appendix 
Numerical values of the leading coefficients for the series about the various 

singular points discussed in the analysis are compiled here. The reader interested 
in results outside of the asymptotic range can find detailed tabulations of the 
functions g, f, and f, in a report by Vaglio-Laurin (1959). 

Leading singularity. When the scale of t; is selected so that the sonic line coin- 
cides with f = 1, the coefficients of the series (32), relative to the singularity 
(I= -a, are 

A0 = 1.9444, A ,  = - 1.4821, A ,  = 0.053795, 

A,  = -0.017573, A ,  = 0.0095676, A,  = -0.0067092. 

The coefficients of the series (37), relative to the singularity f = +a, are 

Bo = -3.2636, B, = -0.056356, B, = 0.015895, 

B, = - 0.0096063, B, = 0.0081281, B, = - 0.0083370. 

Higher-order terms. Numerical values are provided for the leading terms, 
respectively characterized by d, = 1 and d, = 1.5. With the selected scale of t;; 
the coefficients of the series (47a, b) ,  relative to the singularity at  t; = -a, are 

a, = 1 
A 

I \ 

&) a@) 
li  li  i 

0 1 1 

1 - 2.9394 -0.18144 
2 - 0.035555 0.035555 

4 0.018962 0.013276 
3 - 0.014193 - 0.018493 

5 - 0.020263 -0*011346 

a, = 3 
c > 

\ 

ai ai 

1 1 

0 0.027064 
- 0.086770 - 0*013763 

0.046353 0.010353 
- 0.040683 - 0.0093181 

- 4.7901 - 0.50804 
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The coefficients of the series (49b), relative to the singularity g = fa, are 

d, = 1 
b(2, i l i  

0 1 

1 0.040292 
2 - 0.015134 
3 0.011670 

5 0-014615 
4 - 0.012053 

d2 = 3.5 
bk:) 
1 

0.038902 
- 0.013883 

0.010644 
- 0*010998 

0.013356 

The complementary functions fm satisfying the boundary condition at  5 -+ + co 
are linearly related to the solutions fml, fm2 about 5 -+ - a 

d, = 1, 
d2 = 1.5, f2 = 0.080053f2, - Om709f22. 

fi = -0*11918f~,-O~65264f~~; 
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